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Abstract

This paper proposes a new technique for real-time building energy modelling and event

detection using kernel regression. We show that this technique can exceed the performance of

conventional neural network algorithms, and do so by a large margin when the available training

dataset is small. Furthermore, unlike the synapse weights in a neural network, the parameters

of our kernel regression models are amenable to human interpretation, and can give useful

information about the building being studied. We extensively test our proposed algorithms

using a new dataset consisting of 1.5 years of power and environmental measurements for 4

buildings, in addition to benchmarking against the ASHRAE Predictor Shootout dataset. On

the new dataset our kernel regression algorithm gave the best prediction performance in 3 of

4 cases, and significantly outperformed neural networks (the nearest competitor) with training

sets of 1/2 year or less.

1 Introduction

The goal of reducing energy consumption in buildings on a global scale creates a need for easily

deployable, scalable tools that can help to understand the energy use characteristics of large num-

bers of buildings. To meet this need, recent years have seen rapid growth in the area of Building

Dashboards (Berkeley Dashboard1; [AWG09]) and Energy Information Systems [New09], as both

academic and commercial projects. See [GPGP09] for a survey of state-of-the-art tools, and case

studies of their use. In the simplest case, an Energy Information System (EIS) provides feedback of

energy usage to occupants and managers, and this feedback alone has been shown to yield benefits

in terms of reduced energy consumption in commissioning [MM09] and in use [PSJ+07, Dar06].

However, the ability to also predict energy usage forward has potentially profound implications

for intelligent building operation and control [GAB94, Mah01, KDM96, HDK98], for example, by

allowing buildings to actively regulate their consumption in a smart grid scenario.

The building design community has already established advanced tools for building modelling

and simulation, such as EnergyPlus [CLP+04, CLPW00]. Although such tools could in principle be

adapted to prediction tasks, the complexity of these models and requirement of actual physical build-

ing data makes tuning their parameters to meet observed building performance difficult [HBS98].

Hence, it is attractive to look for simpler models that may not have such a strong physical basis,

yet that perform well at prediction. This idea is not new, and was examined in detail for a batch

prediction task in the 1993 ASHRAE “Great Energy Predictor Shootout” [KH94]. This competition

posed the problem of predicting hourly building energy use from a series of environmental input

variables and corresponding building power data over a 4-6 month period. Using this training data,

1http://demandless.org
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Figure 1: Energy modelling. We will attempt to predict unknown building power usage (top curve)
from forecasts of weather parameters, such as humidity and temperature (lower two curves). We
will also make use of the temporal structure and periodicities in the demand profile.

competitors were required to generate predictions over a 2 month test period, with no technical de-

tails about the buildings given. The competition attracted 150 entrants, who attempted to predict

the unseen power loads from weather and solar radiation data using a variety of approaches.

The winner of the competition was an entry from David Mackay [Mac94]. Mackay’s algorithm was

based on Bayesian modelling using neural networks, with an “Automatic Relevance Determination”

(ARD) prior to help select the relevant variables from the large number of possible inputs. Although

this algorithm won the competition by some margin, a large fraction of the other highly ranked

algorithms were also based on some form of neural network2.

A second energy prediction competition was run the following year posing a similar mathematical

problem, but applied to buildings that had undergone a retrofit to increase efficiency [KH96]. For this

competition the entrants had to build models for the same buildings before and after the retrofits,

with the intention of accurately estimating the energy savings that resulted. This led to a string

of improved algorithms, again mostly neural network based. The winner used a variation of Wald’s

test to establish the relevance of the input variables [DH96].

The purpose of the Predictor Shootouts was to provide the building analysis community with a

set of robust methods for predicting hourly energy use, which would have applications in diagnostics

as well as building energy retrofit savings calculations. At the time, the Rio Earth Summit had just

passed Agenda 21 – a blueprint for achieving global sustainability, the US Green Building Council

was founded (1993), and across the building industry there was growing interest in tackling the

energy efficiency problem.

Contemporary work has continued to improve upon the Energy Predictor Shootout notion of

using inverse modelling to predict energy demand. Huang and Shih [HS03] extend the classic au-

toregressive model to deal with non-Gaussian error statistics for short term load forecasting. Dhar

et al [DRC99] acknowledge the long term correlations in demand profiles, and explicitly formulate a

frequency domain model to take advantage of periodicities in the data. Yang et al [YRZ05] consider

the problem of on-line modelling and prediction, extending the popular neural network approach to

deal with a continuously evolving training dataset.

An approach similar in spirit to our own is the work of Dong et al [DCL05]. Here the au-

thors explore the use of Support Vector Machines (SVMs) for prediction of monthly energy usage

based on temperature, humidity and solar radiation. In common with our kernel regression tech-

2Others entrants included local linear approximations and multi-layer perceptrons, in addition to several basic
modelling approaches like linear and piecewise linear regression.
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nique, SVM regression is based on kernel distances over all historical training data. Dong et al also

optimise selected parameters using cross validation (as we will discuss in Section 4.3). However,

their technique lacks a continuous optimisation framework for kernel bandwidths, and cannot gen-

eralise to large training sets, both of which we have found to be important when predicting hourly

building energy usage. Neural networks remain very popular, although the range of reported re-

sults suggests that careful engineering and statistical checks may be required for them to function

effectively [KSG06, Kal00].

A neural network is clearly not a physically plausible model for a building, so ultimately one

would expect that physically based models, with unknown parameters optimised from real observed

data, would provide the most accurate predictions of building energy usage. Some examples of this

idea in practice include the work of Lee and Braun [LB04] and Andersen et al [AMH00]. These

models, sometimes called “grey-box” models, typically involve a simplified physical building model

whose parameters are learnt from training data. This is in contrast to “black-box” techniques such as

neural nets, where the parametric form may be unrelated to the physical system, and the parameters

are often physically meaningless. Andersen et al [AMH00] formulate stochastic differential equations

to model building heat dynamics, and learn the unknown parameters using a maximum likelihood

approach. Lee and Braun [LB04] formulate an energy model using thermal resistance and capacitance

parameters, whose values are also learnt by minimising prediction errors over a training set of real

data. Ultimately, we envisage a continuum of possible energy modelling tools [Mah04], making

use of a smaller or greater amounts of physical or operational building data as available, with any

remaining unknown parameters learnt from real data.

1.1 Scalable Real-Time Energy Modelling

In the current context of global warming, carbon markets and pricing, and governments increasingly

mandating building performance evaluation and display, the scenario of ubiquitous building energy

monitoring is looking increasingly likely. Initiatives such as the European Energy Performance of

Buildings Directive [WvD07], the State of California’s Assembly Bill 1103 [Sec07], and the province of

British Columbia’s smart-grid system [BC 10] not only have profound implications for the metering

industry, but will generate large databases of building energy information to be tapped into. Given

the scale of such databases, it would be impractical to create detailed physical models of all of the

buildings. Thus, there is an increased need for data-driven modelling tools that can predict and

optimise energy usage using an minimal amount of information about each building.

In this work we revisit the idea of scalable building energy modelling in the context of a real-time

application. This requires estimating the predicted energy usage of a building without a detailed

physical specification of it. In such real-time applications, the prediction of building energy use is

not always the final outcome, but rather an intermediate step needed for simulation based building

control systems [GAB94, Mah01] or to alert a building operator of an unusual condition. For

example, we may want to warn the facility manager if the energy usage of the building appears

much greater than our model would predict. This requires a statistical decision to be made about

the probability of the current building state. Alternatively, we might want to automatically adjust

building loads in response to expected high temperatures in the future, for example, by using the

electricity during periods of low demand to store ice in a thermal reservoir [KDM96, HDK98], or

deferring large computing jobs for off-peak time. These types of scenarios require real-time decision

making based on the prediction data.

In this work we propose the use of kernel regression [WJ95] for building energy modelling and

event detection. Whilst the parameters of our model are not literal physical parameters as in [LB04],

they are quite understandable to humans, and will give useful information about the buildings un-

der study. In this sense our model has more in common with grey-box models such as [LB04]

and [AMH00], than the black-box models used in [KH96]. Furthermore, we show that kernel re-
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gression can provide more accurate predictions than neural networks, especially when the available

training dataset is small.

1.2 Our Contribution

The main contributions of our work are:

• Efficient, data-driven building energy prediction using kernel regression. Our models use a

small number of parameters, that can be learned from training data. We exceed the perfor-

mance of an ensemble of 5 neural networks with identical inputs. We implement our smoother

using an efficient k-nearest neighbour algorithm, which allows it to assimilate a very large

training dataset.

• Statistical anomaly/event detection. By reasoning about the statistics of our modelling errors,

we are able to make probabilistic decisions as to whether a building is experiencing an unusual

state, or some event, such as exceeding a power threshold, is likely to occur. This could be

used to alert a building operator or inform a control strategy.

1.3 Comparison to Neural Networks

Our method has several favourable properties in comparison to more commonly used neural network

techniques:

• Kernel regression requires a smaller number of parameters than a neural network with equiva-

lent inputs, and thus is less susceptible to overfitting. In addition, these parameters are easily

interpreted by humans, unlike the synapse weights inside a neural network.

• Kernel regression behaves more smoothly than neural networks outside the range of the training

data, as it works by smoothly combining existing observations, instead of explicitly fitting a

function. The predictions of a kernel smoother lie in the convex hull of the training data,

whereas a neural network can produce infeasible outputs (like negative power) for inputs that

have not been seen before.

2 Problem Definition

In this section we introduce our ground truth dataset, and formalise the problems we wish to solve.

2.1 Ground Truth Dataset

Our dataset consists of hourly power data from four buildings, covering a period of 1.5 years starting

from January 1st 2007. These buildings comprise:

Building A

A fifty year old, 12-storey, 10,500m2 office tower. This building is primarily of concrete

construction with a two-zone (perimeter/core) HVAC system providing heating, cooling

and ventilation.

Building B

A modern, 16,700m2 library building with mechanical ventilation and heating. This

building has different envelope treatments based on orientation, with high glazing on the

east facade and small punched windows on the west. There are no operable windows or

other natural ventilation.
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Building C

A 6-storey, 4920m2 office and lab facility. The construction is brick on concrete, with

operable windows, and mechanical heating and ventilation, but no cooling.

Building D

A 3-storey, 3160m2 “green” building, with recycled timber frame and brick-cladding,

fan assisted natural ventilation and cooling, and a daylight-responsive lighting control

system.

Weather data from a national forecasting authority were used to generate an environmental

variable dataset for the same time period, including temperature, humidity, wind speed and direction.

2.2 Energy Modelling

We use the same cost function for both training and evaluation of our energy modelling strategies.

This is the root mean square (rms) power error between our predictions and the ground truth. For

example, the rms test error is given by

erms =

(
1

NS

∑
iεS

(yi − ŷi)2
) 1

2

(1)

where S is the test dataset, yi is the true and ŷi the predicted power from the algorithm under study

at hour i.

2.3 Event Detection

We focus on detecting peak power events. Peak power events can strain energy supply side and

typically incur high demand charges from utility companies, so there is incentive for facility managers

to minimize their occurrence. For the purposes of this work, we have defined a peak power threshold

by hand for each building. We flag a likely peak power event if the probability that the future

power exceeds the peak power value at hour i is greater than some threshold. Detecting anomalous

usage events (i.e. higher or lower-than-average consumption due to equipment failure etc.) could be

performed in a similar manner by computing the probability of the current power usage given the

prediction.

2.4 Parameterisation

We use a common parametrisation for regression variables, and base our estimates of power on the

following:

Time

We include 4 measurements of time, that are periodic on a daily, weekly, monthly and

annual basis. Temporal measurements are mapped to the unit circle:

[cos(2πt/T ), sin(2πt/T )].

Each timescale is represented by 2 dimensions (sine, cosine) giving a total of 8 time pa-

rameters. Distances in this space approximate differences in time for small distances, and

the absence of a modulus operator allows us to use a general purpose nearest neighbour

algorithm for the kernel smoother (described in Section 4).

Temperature
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Figure 2: Wind and building power usage. Left to right: buildings A, B, C. These colour-coded plots
show the effect of wind on building power usage. Red shades correspond to high (normalised) power,
with blue corresponding to lower power. The higher power events (red shades) are often caused by
warm south-westerly winds, which necessitate air conditioning. Note that wind and temperature
will also often be correlated. The axes on each of these plots run from ±70 km/h in the North-South
and East-West directions.

We sample temperature and other environmental measurements every hour. The tem-

perature values are smoothed using exponential weighting functions with time constants

of 1.5, 24 and 168 hours, enabling regression algorithms to pick up dependencies of power

on temperature at various timescales, i.e., hourly, daily, weekly. These time constants

were chosen by hand, though in principle they could also be learnt from training data

(see Section 7.4).

Humidity

Humidity is smoothed using an exponential with a time constant of 24 hours.

Wind Velocity

We parametrise the wind speed and direction using the x, y components of the wind

velocity (see Figure 2). These are also smoothed using an exponential with a time

constant of 24 hours.

This gives a total of 14 parameters, and these identical inputs are fed to each of the learning

algorithms that we will describe in the next section. As a preprocessing step, we normalise each input

parameter by subtracting the mean and dividing by the standard deviation. We also train separate

models for weekdays, and weekends/holidays, as these have quite different characteristics. Our

parametrisation neglects many relevant building operational factors, such as event programming,

occupancy, and human behaviour. However, note that operational factors may be correlated with

weather factors in some cases.

3 Learning Algorithms

We compare the following six algorithms:

Temporal Average

This baseline algorithm is a simple average over each temporal instance, e.g. the power

prediction at 3pm on Monday is the average over all Mondays at 3pm.

Temperature Neighbours
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Figure 3: Kernel Regression for the B dataset. For this building, power is an increasing function
of temperature, with a step change of 150kW at around 15°C when cooling units turn on. The
piecewise linear model (left) picks up the discontinuity, but gives a much coarser model than the
kernel smoother (right). Because kernel regression smoothly combines historical data measurements,
it could adapt to even more complex changes such as multiple steps or non-linear behaviour.

We again average over each temporal instance, but only for nearest neighbours in terms

of temperature that are within 5 degrees of the current temperature.

Multivariate Linear

We compute a least squares linear dependence of power on all of the input variables,

except for the temporal variables. Separate multivariate linear models are learnt for

each time of day, and separately for weekdays/holidays.

Piecewise Linear

This is a piecewise linear dependence of power with temperature. We learn the switching

point, in addition to the line parameters, by minimising a robust cost function via a

sampling approach. As above, these models are learnt separately for each hour of the

week, for weekdays and weekends/holidays.

Neural Network

We train a committee of 5 feedforward neural networks, with 8 hidden units and sig-

moidal transfer functions. The outputs of the 5 networks are averaged to generate the

output power estimate. We trained the networks using the standard LM backpropogation

algorithm in the MATLAB neural network toolbox.

Kernel Smoothing

We estimate the power based on a kernel density estimate over all the weather and time

parameters. We learn the bandwidths of the kernel smoother by cross validation.

All the algorithms except the baseline “temporal average” are given a further input to specify

public holidays, where the buildings are typically running at a fraction of their max capacity. In the

next section we elaborate on our kernel smoothing approach.

4 Efficient Kernel Regression using K-Nearest Neighbours

4.1 Motivation

Kernel regression, also known as kernel smoothing, is a data driven approach to regression. It is

closely related to a straightforward concept called a nearest neighbour smoother. In this algorithm,
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one would look up in the historical dataset to find the day and time with the closest values of the

regression parameters (e.g. time and temperature), and simply predict the power output of that

nearest neighbour. In the context of a power prediction problem, this is equivalent to saying “what

day/time in the past was most similar to today” and using that data to predict the current power

output.

However, rather than taking a single nearest neighbour, a kernel smoother predicts a weighted

average of nearby data items, with the weights being controlled by a kernel function. The kernel

weights are important, because each parameter would normally have different units (e.g. temperature

and humidity), and the relative importance of each parameter would also vary. Learning the weights

in the kernel smoother tells the algorithm how to weight each dimension when computing nearest

neighbours, for example, the algorithm might smooth over a 5 degree range of temperature and a 2

hour range in time of day.

4.2 Mathematical Description

In contrast to a neural network, which makes assumptions about the shape of the function that can

be modelled, a kernel smoother begins with an assumption about the probability density of the data.

Specifically, the assumption made is that the data has a kernel density, i.e.,

p(y,x) =
1

N

N∑
i=1

k(x,xi) k
′(y, yi) (2)

where yi are the function values and xi the associated regression parameters. k(., .) and k′(., .)

are kernel functions, which are typically designed to give a high probability for nearby data. The

expected value of y given x is given by

E(y|x) =

∫
y
p(y,x)

p(x)
dy (3)

=

∑
i

[
k(x,xi)

∫
y k′(y, yi) dy

]∑
i k(x,xi)

. (4)

For a zero mean kernel this gives rise to the well known Nadaraya-Watson Estimator [Nad64]

ŷ =

∑
i k(x,xi) yi∑
i k(x,xi)

, (5)

where ŷ = E(y|x). The expected value of power ŷ is a weighted sum of power values for historical

data with nearby time/weather parameters x. In this work we will assume a Gaussian kernel with

diagonal covariance, so

k(x,xi) = N(x− xi;0, diag(σσσ2)) , (6)

where σσσ is a vector of unknown kernel bandwidths corresponding to each dimension of the mea-

surement space x. See Figure 3 for an example of Kernel Smoothing applied to building energy

data.

4.3 Learning

We learn the parameters of our kernel smoother by cross-validation, using the same objective function

as in Equation 1, but evaluated over a validation set V. ŷ is the predicted power from the kernel

smoother:

8



ŷi =

∑
jεT k(xi,xj) yj∑
j k(xi,xj)

, (7)

where xi is the current measurement vector including time and environmental parameters such as

the temperature, and {xj , yj} are pairs of environmental and power measurements from the set of

training data T . We can learn the optimal settings for σσσ by minimising Equation 1 with respect to

σσσ over a cross validation set V:

σσσ∗ = arg min
σσσ

∑
iεV

(yi − ŷi)2 . (8)

This is a non-linear least squares problem which can be solved using the Levenberg-Marquardt

algorithm [NW99].

4.4 Fast Kernel Regression using a k-NN Approximation

Computing the kernel regression estimate for a single time instance requires a summation over every

historical power/weather measurement in the training dataset (equation 7). In practice, this is too

slow to compute, and would render the learning strategy of Section 4.3 infeasible using current

hardware. To solve this problem, we instead use an approximation to equation 7, that can be

computed very efficiently:

ŷi =

∑
jεNN(i) k(xi,xj) yj∑
jεNN(i) k(xi,xj)

. (9)

The set NN(i) consists of the k measurements with the largest values of k(xi,xj) in the training set.

Since we are using a Gaussian kernel, these can be computed very efficiently using an approximate

euclidean k-nearest neighbour algorithm in a scaled space x′ = [x′1, x
′
2...] where x′i = xi/σi and

x = [x1, x2...]. To compute approximate nearest-neighbours efficiently, we use a best-bin first k-d

tree as in [BL97].

Since the training dataset is organised as a tree, new data can be quickly assimilated into the

model with a cost of O(logN). This is ideal for a real-time application, where retraining of σσσ values

is performed on a fixed cycle (e.g. weekly), but it is desirable to incorporate the effect of new data

as soon as it is available.

5 Probabilistic Peak Power Event Detection

One advantage of a predictive model of building energy usage is the ability to detect and flag

anomalous events. For example, we might alert the facility manager if the actual power usage is

outside of 3 standard deviations of the normal energy usage given the current weather conditions.

This could also be used in a control setting. For example, if we knew that a high power usage was

expected tomorrow, we might balance our future loads accordingly, for instance by pre-heating or

pre-cooling the building. To demonstrate probabilistic event detection, we attempt to detect and

flag all peak power events in the dataset, when the actual power usage is above a given threshold.

To do this we assume a Gaussian distribution for the residuals

ri = yi − ŷi ∼ N(0, σ2
n) , (10)

where σn is computed for each building model from the standard deviation of the residuals over the

entire training set. The probability that the actual power exceeds some value ymax is given by
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p(yi > ymax) =

∫ ∞
ymax−ŷi

N(r; 0, σ2
n) dr (11)

= 0.5× (1− erf((ymax − ŷi)/σn)) . (12)

We declare a peak power event if this probability exceeds a certain threshold pthresh, i.e. if

0.5× (1− erf((ymax − ŷi)/σn)) > pthresh . (13)

In reality any such scheme will be subject to false positives and false negatives, and an appropriate

operating point should be chosen. We do this by plotting receiver operating characteristic (ROC)

curves obtained by varying pthresh over the range [0, 1]. These curves show the tradeoff between

true positive (correct detection rate) and false positive (false alarm rate) for all possible thresholds,

evaluated over the test set, e.g., a correct detection would occur if the actual power were above ymax
and the estimated probability of exceeding it p(yi > ymax) was greater than the threshold.

6 Experiments

We perform two main experiments using our new dataset, as well as benchmarking using the

ASHRAE Predictor Shootout dataset [KH94]. Firstly, we evaluate the relative performance of all of

the algorithms with a large training dataset (1 year). A test set of 26 weeks is selected as every 3rd

week in the 1.5 year dataset, and true power values in the test set are unknown to the algorithms.

Each algorithm generates predictions for each of the 26 test weeks by attempting to generalise from

the training dataset, and we evaluate their performance by computing the rms errors against the

held-out ground truth. In addition, we use the methodology described in Section 5 to detect peak

power events in the held-out test set, and compare this prediction performance against the ground

truth.

Secondly, we perform experiments to test the performance of each algorithm as the size of the

training dataset is decreased from 1 year down to 2 weeks. The small training dataset cases are

intended to simulate the situation that occurs when a new building is added to a portfolio of

buildings to be modelled, or an existing building undergoes a significant retrofit that alters it’s energy

performance. It is important for the models to quickly adapt and generate accurate predictions as

soon as possible in this case.

Finally, we compare the performance of our algorithm with those entered in the Energy Predictor

Shootout competition, training the algorithm using the supplied training data, and testing the

performance in prediction of the 3 targets of the “A” dataset: namely whole-building electricity,

cooling and heating water loads for the EC building at Texas A&M University.

7 Results

7.1 Energy Prediction Performance (New Dataset)

Prediction results in terms of the overall rms errors for the 26 test weeks are shown in Table 1. These

rms errors have been normalised by the mean power usage for each building, which is equivalent

to the coefficient of variation CV(RMSE) (standard deviation of prediction errors divided by the

mean target value). For every building except D, the kernel smoother gives the best results. These

results exceed the performance of neural networks by 2% (A), 7% (C) and 26% (B). The largest

range of performance results was obtained for building B, which also has the most varied demand

profile, with significant variations with respect to temperature, weekly cycles etc. Kernel smoothers

are ideal at adapting to complex non-linear behaviour such as this.
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Figure 4: Predicted curves for all 4 buildings, weeks 11-12 (this is a 2 week subset of the 26 test
weeks). Top to bottom: A, B, C, D. Note that day 245 is a holiday, leading to widely divergent
power predictions for this unusual event. Also, building A experiences a demand spike on day 226,
which is correctly predicted by the kernel smoother but missed by the other models. The rms errors
for each algorithm for each week are shown in the top right of each plot.
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Building
Algorithm

average temp nn linear p. linear neural net kernel

A 16.99 11.86 12.20 12.41 10.68 10.49
B 22.46 19.47 20.05 19.87 14.76 10.86
C 9.98 8.49 8.54 8.61 7.75 7.14
D 12.00 10.33 10.34 10.49 10.75 10.67

Table 1: Rms errors for each of the 4 buildings for each algorithm. These results are quoted as a
percentage of the buildings mean power output. This is equivalent to the coefficient of variation
CV(RMSE). The best results for each building are shown in boldface.

Figure 5: Modelling and event detection performance for the B building. The left figure shows the
rms errors (normalised by the mean building power usage) for each of the 26 test weeks. Note that
the kernel smoother gives the lowest fitting errors on almost every test week, followed by the neural
network, and the conventional modelling techniques. The right figure shows the ROC performance
for detection of peak power events. The 95% error rates for each algorithm are quoted in the legend.
As expected from the more accurate fitting results, the kernel smoother is also more reliable at
predicting peak power events.

These results were obtained by training each algorithm over 52 weeks of training data, and testing

on 26 weeks. For examples of the actual predictions produced by each algorithm, please see Figure

4. Detailed rms errors per week and peak power event detection results for the building B are shown

in Figure 5. As expected, the performance in terms of event detection increases with the accuracy of

prediction, with kernel smoothers giving the most accurate predictions, followed by neural networks

and linear models.

7.2 Small Training Sets

A key advantage of kernel regression in comparison to neural networks in the application presented

here is that it is much less susceptible to overfitting. See Figure 6 for the results of an experiment

to test the performance with a continuous range of training dataset size. Note that for small

numbers of training weeks (less than a couple of months), the neural networks exhibit a poor

average performance, with large variance. For small numbers of training weeks, the kernel smoother

performs almost equivalently to the baseline “average” model, showing that it is not overfitting

using small amounts of data. The main reason for this is that neural networks require many more

parameters (120 in the examples shown here) than does kernel regression (14 in our examples). This

is made possible because the 14 parameters used by the kernel smoother are each highly relevant

to the problem. Note that the asymptotic performance of the kernel smoother is about 25% better

12



Figure 6: Algorithm performance versus size of the training dataset. The left figure shows the mean
rms error of each algorithm for the B dataset, as the number of training weeks is varied from 2
to 26. Each data point is computed as the mean of 10 separate training runs, with a randomised
selection of training weeks. The right figure shows the mean and standard deviation for just the
kernel smoother and the neural network models. Note that the neural network has high error and
high variance for small numbers of training weeks, showing that it is overfitting the data. Kernel
smoothers, on the other hand, have almost identical error to the basic average models for small
numbers of training weeks, showing their robustness to overfitting. The kernel smoother asymptotes
to an error around 25% less than for the neural network as the training set becomes larger, with a
low standard deviation.

than the neural networks as well. We again averaged results from a committee of 5 neural networks

to generate these results. The results for neural networks would be much worse if this was not done.

7.3 Interpretation of Kernel Weights

Another positive benefit of our kernel smoothing approach over neural networks is the ability to

interpret the model parameters that are learnt. Examples of optimal parameter settings are shown

in Figure 7. Here we have plotted the reciprocal of the σ parameters, as this quantity gives some

idea of the importance attached to that parameter. The highest weighted parameters are usually

time of day, followed by time of year for most buildings (week and month are less important). This

suggests that annual variations, such as holidays and exam periods are more important than weekly

or monthly cycles when predicting power.

The importance of the weather parameters varies quite a bit between buildings. Temperature was

always the highest weighted weather parameter, but the most important time scale for temperature

varies (e.g., 1.5 hours for building A and 24 hours for building B). This is consistent with the physics

of buildings: A is an older building with a poorly sealed envelope, whereas B is better insulated and

thermally massive, so we expect it to have a larger time constant in its response to temperature.

The A model also has by far the largest weights for the wind parameters, which is consistent with

the fact that it is the tallest building in the surrounding area and highly exposed to the wind.

The buildings also have significantly different weights for the different time periodicities. For

example, B is the only building with a significant weight for the time of week parameters. The

reason for this can be seen in Figure 4 – for all of the buildings except B, each day of the week is

almost identical, whereas for B the power trace on Friday looks quite different, dropping to a lower

power in the early evening. Hence, day of the week is an important input parameter when predicting

power usage for building B.
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Figure 7: Optimal kernel weights learned from training A and B weekly kernel smoother models over
a 1 year training period. The error bars show standard deviations over 10 randomised initialisations.

7.4 Comparison to Predictor Shootout Winners

Finally, we have compared our algorithm against the best performing competitors in the original

ASHRAE Energy Predictor Shootout. After training using the supplied 17 week dataset, we evaluate

Coefficient of Variation (CV) and Mean Bias Error (MBE) statistics over the 8 test weeks. The results

are shown in Table 2. In addition to training a single kernel smoother as described previously, we also

experimented with using a committee of 5 kernel smoothers, averaging the results of each separately

trained predictor to get the final output. The kernel committee results are denoted “kernelc” and

the single kernel smoother results denoted “kernel” in the table, “neural” again shows results from

the MATLAB neural network implementation. Each of these algorithms is given identical inputs of:

cos/sin of the day, half-day, month and year angles, temperature and solar radiation smoothed on

timescales of 1.5, 24 and 72 hours, and humidity and windspeed smoothed over 24 hours. The other

algorithms in the table are (9) Mackay’s Bayesian Non-Linear Modelling, (6) Ohlsson’s Feedforward

Multi-layer Perceptron, (2) Feuston’s Neural Network with Pre and Post Processing.

As can be seen from the table, our algorithms generate results that are comparable with the

ASHRAE Shootout winners. For the second target (WBCW) the kernelc algorithm gave the best

overall result in terms of Coefficient of Variation. For targets 1 and 3, the other algorithms performed

better. In terms of average CV our algorithm places 6th overall in the predictor shootout results

reported in [KH94]. However, in terms of MBE our algorithm performs worse. This could be due to

our choice of objective function: we effectively optimise for CV by minimising rms over the training

set. We could explore alternative loss functions, such as Huber [Hub81], to tradeoff between CV and

MBE. The results we quote are averages for 5 trials (with randomised subsets of training data).

Algorithm (9) (Mackay) still generates the best results overall, beating many other neural network

implementations in the competition, which suggests that it is some particular feature of this imple-

mentation, e.g., input preprocessing, network architecture, or training approach, that is important.

One feature of (9) is the use of priors on the relevance of input parameters (Automatic Relevance

Determination). Although to some extent our kernel bandwidths should allow for variable relevance

weighting in this way, we have found that providing a smaller set of manually selected relevant input

parameters gave better results in some cases. For example, using only time parameters (excluding

weather parameters) improved the performance of the kernel committee from a CV of 13.61 to 11.92

for WBE, and 33.01 to 24.26 for WBHW (although the result was worse for WBCW). This obser-

vation could in principle be utilised to automatically generate parsimonious models. For example,

one could use a sparsity (L1) prior on the kernel weights (1/σi), which would favour models with
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Algorithm
WBE WBE CHW CHW HW HW AVG AVG
CV MBE CV MBE CV MBE CV MBE

9 10.36 8.06 13.02 -6.37 15.24 -5.84 12.87 6.75
6 11.78 10.50 12.97 -5.95 30.63 -27.33 18.46 14.59
2 11.89 8.01 13.69 -6.67 31.65 -27.55 19.08 14.08

kernelc 13.61 11.00 12.40 -9.05 33.01 -30.17 19.67 16.74
kernel 14.55 11.59 13.15 -9.41 34.75 -31.53 20.82 17.51
neural 13.03 8.20 15.75 -6.51 72.18 -69.41 33.65 28.61

Table 2: Results on the Predictor Shootout Dataset A. CV = Coefficient of Variation, MBE = Mean
Bias Error, WBE = Whole Building Electricity, CHW = Chilled Water, HW = Hot Water. The
best performing CV results for each test case are shown in boldface.

fewer parameters having significant weights [HTF09]. As well as automatically selecting relevant

environmental variables, one could in principle include optimisation over the smoothing timescales of

these variables in our learning approach. This would incur the additional computational expense of

re-smoothing the training set each iteration to compute derivatives, but should be computationally

feasible.

In future work we would like to perform a more thorough study with reimplementations of these

algorithms over a larger training set. Based on our results (e.g., Figure 6), 17 weeks is rather a short

time for training, so we posit that there could be significant changes in the results quoted in Table 2

with slightly different training data. In other words, it would be instructive to know the uncertainty

of prediction for the top performing algorithms in the shootout competition.

As previously, we can interpret our models by visualising the kernel bandwidths, see Figure 8.

We found that the chilled and hot water loads (WBCW, WBHW) have similar models, with little

dependence on time of day or month, but strong dependence on the current and daily average

temperature. In contrast the Whole Building Electricity (WBE) target depends strongly on the

time of day, and annual time, with a much smaller influence of the weather parameters.

8 Conclusion

We have proposed a new technique for building energy modelling using kernel regression. Using

a new dataset of power and weather measurements for 4 buildings over 1.5 years, we have tested

our technique and compared it to a standard neural network algorithm. We have also compared

performance against the top performing algorithms in the ASHRAE Shootout dataset. We find that

our kernel smoothers give results that are comparable to neural networks in prediction tasks, and

can outperform them significantly when the training set is small. Furthermore, our models have

been found to provide an additional level of information about the building under study, which

other models lack, and are capable of showing the sensitivity of its power response to time and

weather parameters. We have also described an efficient implementation suitable for use in scalable,

real-time energy modelling systems.
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